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1 Introduction

In the event of a nuclear detonation in an urban environment, response time for triage by first re-
sponders, and forensic sample collection are of the utmost importance. When it comes to response
planning, decision makers within the government need to have the most up-to-date information re-
garding several quantities of interest so that the maximum amount of lives can be saved. Quantities
of interest in a post-detonation scenario include the spatial distribution of neutron-induced stable
and radioactive isotopes in the environment, fallout patterns, blast and fire damage zones [1]. The
UMPRINDER toolkit is developed to calculate the prompt neutron-induced stable and radioactive
isotopes in the surrounding environment in a nuclear forensics post-detonation scenario. The dis-
tribution of these isotopes in the environment can be used to provide guidance in determining best
routes for first responders in order to minimize dose, debris sample collection routes for subsequent
radiochemical analysis, and provide initial radionuclide inventories to fallout codes in order to im-
prove fallout zone fidelity. Other methods have approached isotope transmutation on unstructured
mesh for the fusion community concerning shutdown dose rates associated with fusion reactors.
UMPRINDER is the first method to be focused on calculating some of the quantities of interest
for the nuclear forensics and weapon effects communities.

2 Methods

The UMPRINDER toolkit includes two main modules: the Material Processing module (Sec-
tion [2.1) and the Activation module (Section 2.2). The Material Processing module pulls from
various material composition databases and publications to provide homogenized materials for the
initial MCNP6.2 run. The Activation module couples MCNP6.2 and latest release of CINDER2008
as apart of the AARE package using a Python wrapper to translate the fluxes on the unstructured
mesh geometry from the initial MCNP6.2 run into input files for CINDER2008. The Activation
module then executes individual CINDER2008 runs in parallel using OpenMP or MPI, and post-
processes the outputs from the CINDER2008 runs for direct analysis.

2.1 Overview of the Material Processing Module

The Material Processing module is included with the toolkit to help set up the original MCNP6.2
run with materials often found in an urban environment: soil composition based on latitude and
longitude interpolated from USGS data, building construction materials separated by building type,
homogenized materials of the building interior based on building type, and homogenized materials
of various electronics, e.g. laptops, cellphones, hard disks, etc [2].



Table [I] tabulates a summary of the electronic, structural, and soil materials that are included
in the Material Processing Module along with a short description of the origin of the material
composition.

The USGS Series 801 data is linearly interpolated between the sample locations using SciPy’s
interpolate.griddata function for the location of interest for the user . The output of the terrain
processing portion of the Material Processing Module is three MCNPG6 material cards detailing the
PPM level elemental composition of the soil for the three USGS categories of soil: Top 5 cm, A
horizon (5-10 c¢m), and C horizon (80-100 cm). Figure (1] illustrates the Quartz wt % at sample
locations across the United States that are included in the USGS Series 801 data. The density of
the interpolated soil composition is 1.52 g/cm?® based on generic soil from PNNL’s report.

Quartz Original Concentration in A Horizon

1.0
Wt.%

Figure 1: Example of the raw data from USGS Series 801 ||

In order to properly represent a homogeneous building, the relative abundances of structural
materials were incorporated into the Material Processing Module from Kleeman and colleagues’
studies that characterize the gross composition of buildings for demolition purposes . Building
categories from Kleeman and colleagues are applied to the city models based on building size and
rough building type determined by the city building code.



Table 1

Material Processing Data Summary Table
(PPM= parts per million, MA= most abundant)

Name Density | Level of Detail Reference
(g/cm?)
Notebook Computer 1.42 PPM Figure 2 [6] and Table 1 [7]
Lithium Ion Battery 1.73 PPM Table 2 [8]
Hard Drive Disk 2.37 PPM Figures 4 & 7 [6]
NdFeB Magnets 7.5 PPM Table 2 [6]
PCB 1.85 PPM Table 1 PCB-1 [9]
Mobile Phone 2.177 PPM Table 4 Average 8]
Carbon Steel 7.82 MA [10]
Dry Air 0.001205 MA 10|
Suburban Air 0.001205 PPM Table 7 Average [11]
Fired Brick 2.1 MA [10]
PPM Fired Brick 2.1 PPM [12]
Southern Pine Wood 0.64 MA [10]
Average Northern Wood 0.64 PPM Table 3 Spruce [13] Table 5 Mean [14]
Spruce Wood 0.45 PPM Tables 2 & 3 [13] & Table 1 [15]
Fir Wood 0.51 PPM Tables 2 & 3 [13]
NIST SRM 612 Glass 2.4 PPM [16]
Plate Glass 2.4 PPM MA [10] and PPM |[17]
Fly Ash Concrete 1.83 PPM MF30 Table 1 [18] and Table S7 [19]
Silica Fume Concrete 2.02 PPM MS10 Table 1 [18]
Blast Furnace Slag Concrete 1.89 PPM MB30 Table 1 [18]
Quartz NA MA [20]
Kaolin NA MA [21]
Chlorite NA MA [21]
Sepiolite NA MA [21]
Calcite NA MA [20]
Gibbsite NA MA [20]
Dolomite NA MA [22]
Aragonite NA MA [23]
Zeolite NA MA [24]
Gypsum NA MA [20]

Talc NA MA [20]
Hornblende NA MA [25]
Serpentine NA MA [20]

Hematite NA MA [20]
Goethite NA MA [20]
Pyroxene NA MA [2]

K Feldspar NA MA [2]
Plagioclase Feldspar NA MA [2]
Pyrite NA MA [2]




2.2 Overview of the Activation Module

The Activation Module implements a solution strategy similar to the rigorous 2-step (R2S) system
with the exception that the end goal is an isotopic inventory for each mesh element for subsequent
analysis [26]. The Activation Module allows the user to calculate the isotopic inventory for each
mesh element in the model, and when all of the processes have finished the transmutation runs, it
produces a HDF5 database coupled with a XDMF file for direct viewing of results in ParaView or
VisIT [27H30].

The Activation Module initializes the transmutation calculation by loading in the material defi-
nitions from the MCNP6.2 output file, elemental fluxes on the MCNP6.2 EEOUT file, and isotopic
natural abundances and other elemental data from the CINDER2008 BIGZA file. The Activa-
tion Module translates the MCNP6.2 material definitions into CINDER2008 material definitions
by breaking up the element definitions, if present, into their natural isotopics and assigning each
nuclide their own atom fractions. If specific isotopes are specified, the code directly translates
the atom fractions from the MCNP6.2 material definitions to CINDER2008 material definitions.
Fluxes from the EEOUT file are linearly interpolated to match the cinder cross section energy
group structure. The user is free to choose any arbitrary energy bin structure when binning the
fluxes in MCNP6.2 but in order to minimize interpolation error, the MCNP6.2 energy bin structure
should be the same as the cinder cross section library used in the transmutation calculation. The
Activation Module fully automates the production of the CINDER2008 input files and parallelizes
the transmutation calculations by executing CINDER2008 on several processes.

Once the transmutation calculation has been initialized, the parallelization scheme is set up
depending on whether the user elects to use Python’s multiprocessing package (default) or Open
MPI [31,132]. The inputs for one mesh element of each material in the calculation whose neutron
flux is zero along with all of the mesh elements whose neutron flux is non-zero are added to either
the queue in Multiprocessing mode or the list of inputs in OpenMPI mode for processing by the
workers; either subprocesses or MPI processes. The results from the zero-flux runs are used to get
place holder data for the rest of the zero-flux mesh elements with the corresponding material. The
place holder data is essential for correct visualization of the data. Without the place holder data,
the mesh elements whose flux is zero would contain a zero for all nuclides in the results database.
Once the worker has completed a CINDER2008 run for a single mesh element, the worker writes
the results to it’s own HDF5 database.

Once all of the transmutation calculations have been executed, all of the worker HDF5 databases
are merged into one main HDF5 database. The place holder data of the mesh elements whose
neutron flux is zero is then added to the master HDF5 database. Finally, a XDMF file is written
to accompany the main HDF5 database. The XDMF file is used to point to the data in the
HDF5 database without having to load the entire HDF5 database. The HDF5 database contains
activity, activity density, mass, and decay heat for each nuclide in each mesh element along with
the mass density, atom density, and volume of each mesh element. The XDMF file breaks down
the information in the HDF5 database by part and information category for easier data viewing.
The Activation module also includes some ParaView post-processing macros that allow the user to
create custom datasets within ParaView like isotopic ratios and elemental concentrations.

2.3 Pre-Processing Procedure

In order to calculate the stable and radioactive isotopes produced by a nuclear detonation in an
urban environment, the geometry of the city needs to be constructed and converted to a format
conducive for particle transport with MCNP6.2.



The general building and terrain footprints of an urban environment can be gathered from
OpenStreetMap directly or purchased in an importable CAD format from CADMAPPER (33, 34]
The CADMAPPER. website provides a user interface to create 3D CAD models of the terrain,
buildings, roads, parks, waterways, etc. for any user-selected region of the map. Once the user
has selected a region of the map, a 3D CAD model can be generated and imported into the user’s
CAD program of choice. The data downloaded directly from OpenStreetMap has to be edited and
converted before the user can import it into a CAD program. JOSM is an open source extensible
editor for OpenStreetMap data, and within JOSM, the user can edit the OpenStreetMap data to
delete certain features not necessary for valid representation of the urban environment; such as lines
representing roads, subway tracks, park benches, trees etc. [35]. Once the OpenStreetMap data is
cleaned up in JOSM, the user can then open the OpenStreetMap data in OSM2World to convert the
data into a importable CAD file format [36]. Once the urban environment data is imported into a
CAD program, the user must clean-up the model to ensure that there are no overlaps, interferences,
or spline surfaces in the model and make sure the overall model is “water-tight.”

Once the model is “water-tight” the user must create an unstructured mesh (UM) representation
of the CAD model, and write the mesh as an Abaqus/ CAE® input file. There are number of
methods to generate the UM representation of the CAD model, but this paper will focus on the
most prominent methods. Abaqus/CAE® is able to import the CAD model and generate a UM
representation. Kulesza’s UM tutorial using Abaqus/CAE® 6.12-1 provides a detailed procedure
for generating the UM Abaqus/CAE® input file for MCNP6.2 [37]. SilverFur’s AtilladMC software
is designed for UM generation specifically for particle transport with MCNP6 [38]. AtilladMC
allows the user to generate the UM representation of the CAD model also able to generate a UM
representation of the CAD model and write the Abaqus/CAE® input file. Once the Abaqus/CAE®
input file is generated, a MCNP6.2 calculation can be set up by following the procedure described in
Martz’s overview of the usage of UM in MCNP6.2, and using the material cards from the Material
Processing Module described in Section [39]. Figure [2| shows an high level overview of the
pre-processing procedure.
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Figure 2: Overview of the Pre-Processing Procedure.

3 Results

The city of Boston is modeled in the Figure [3] and a 100 kT ground detonation is simulated using
the process outlined in Sections and 2.3] at the source location shown in Figure[d] Northrop
Source 8 is used as the neutron source in the MCNP6.2 calculation and the materials in the model
are transmuted using the UMPRINDER code . Figure [5| shows some of the isotope specific
activities generated by neutron capture in stable isotopes in the city. Components such as the
water and some of the building types, in the model that do not contain results for the nuclides of
interest are not shown in Figure[] Figure [6] shows isotopic ratios of some of the isotopes produced
by neutron activation. The isotopes produced by neutron activation in the urban environment
close to ground zero will likely be transported from the locations shown in the figures below due to
a portion of them being swept up into the fireball, buildings collapsing, fires burning and lofting
them into the atmosphere, etc. The results shown below can be used as a source term for fallout
and fire modeling codes.



(b) CAD Model of Boston, MA

Figure 3: Overview of Boston, MA Model



Source Location
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Figure 4: Overview of the Source Location
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Figure 5: Neutron activated isotopic activity at 10 seconds post detonation
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Figure 6: Isotopic ratios for products of neutron activation at 10 seconds post detonation




4 Summary

UMPRINDER is a new code that joins together the unstructured mesh capability of MCNP6.2 with
the transmutation fidelity of CINDER2008 as apart of the AARE package to produce quantities of
interest to the post detonation nuclear forensics and weapon effects communities. The city of Boston
is modeled using the newly developed methodology of creating a unstructured mesh representation
of a city based on the procedure described in Sections & The results from UMPRINDER
calculating the neutron activated quantities from a 100 kT ground detonation demonstrated that
isotopic specific quantities can be analyzed on the city mesh.
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